Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
E
Efecto Airbnb Valencia
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Milestones
Merge Requests
2
Merge Requests
2
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Efecto Airbnb
Efecto Airbnb Valencia
Commits
2cf2dcdd
Commit
2cf2dcdd
authored
Apr 03, 2019
by
numeroteca
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
añade mapas en VUT e inicia comparativa con datos de Airbnb
parent
7ab52cc0
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
129 additions
and
16 deletions
+129
-16
analysis/vut-analysis.R
analysis/vut-analysis.R
+129
-16
No files found.
analysis/vut-analysis.R
100644 → 100755
View file @
2cf2dcdd
# script para analizar las viviendas turísticas de la comunidad Valenciana
# Load libraries
library
(
tidyverse
)
# for maps and theme nothing
library
(
ggmap
)
# read geojson
library
(
rgdal
)
library
(
gsubfn
)
# load data ------
vut_valenciana
<-
read.csv
(
"data/original/190302_viviendas-turisticas-comunidad-valenciana.csv"
,
stringsAsFactors
=
FALSE
)
vut_valencia
<-
read.csv
(
"data/original/190302_viviendas-turisticas-comunidad-valenciana_valencia.csv"
,
stringsAsFactors
=
FALSE
)
# load data
vut_valencia
<-
read_csv
(
"data/original/190302_viviendas-turisticas-comunidad-valenciana.csv"
)
vut
<-
read_csv
(
"data/output/190302_viviendas-turisticas-comunidad-valenciana_valencia_geocoded_barrio-distrito.csv"
)
vut
<-
read_csv
(
"data/original/190302_viviendas-turisticas-comunidad-valenciana_valencia.csv"
)
# shapes
barrios
<-
readOGR
(
"data/original/shapes/barrios.valencia.wgs84.geojson"
)
distritos
<-
readOGR
(
"data/original/shapes/distritos.valencia.wgs84.geojson"
)
# municipios <- distritos
municipios
<-
readOGR
(
"data/original/shapes/municipios.provincia.valencia.geojson"
)
# Analisis comunidad valenciana -------------
vut.municipio
<-
group_by
(
vut_valencia
,
Municipio
)
%>%
summarise
(
n
=
n
()
)
%>%
arrange
(
desc
(
n
))
vut.municipio
<-
group_by
(
vut_valencia
na
,
Municipio
)
%>%
summarise
(
n
=
n
()
)
%>%
arrange
(
desc
(
n
))
vut.municipio
%>%
head
(
25
)
%>%
ggplot
(
aes
(
x
=
reorder
(
Municipio
,
n
),
y
=
n
))
+
...
...
@@ -23,21 +37,16 @@ vut.municipio %>% head(25) %>%
x
=
"tlf"
,
caption
=
"Datos: Comunidad Valenciana. Gráfico: lab.montera34.com/airbnb"
)
# analisis Valencia -----------------
table
(
vut
$
Signatura
)
names
(
vut
)
<-
c
(
"signatura"
,
"municipio"
,
"provincia"
,
"addres"
,
"tlf"
)
# names(vut) <- c("signatura","municipio","provincia","addres","tlf","lat","lon")
ggplot
(
data
=
vut
)
+
geom_bar
(
stat
=
'identity'
,
aes
(
x
=
signatura
,
y
=
tlf
))
ntlf
<-
group_by
(
vut
,
tlf
)
%>%
summarise
(
n
=
n
()
)
%>%
arrange
(
desc
(
n
))
ntlf
<-
group_by
(
vut
,
Teléfono
)
%>%
summarise
(
n
=
n
()
)
%>%
arrange
(
desc
(
n
))
ntlf
[
!
is.na
(
ntlf
$
tlf
),]
%>%
head
(
25
)
%>%
ggplot
(
aes
(
x
=
reorder
(
tlf
,
n
),
y
=
n
))
+
ntlf
[
!
is.na
(
ntlf
$
Teléfono
),]
%>%
head
(
25
)
%>%
ggplot
(
aes
(
x
=
reorder
(
Teléfono
,
n
),
y
=
n
))
+
geom_col
()
+
coord_flip
()
+
theme_minimal
(
base_family
=
"Roboto Condensed"
,
base_size
=
14
)
+
theme
(
...
...
@@ -50,8 +59,112 @@ theme_minimal(base_family = "Roboto Condensed", base_size = 14) +
x
=
"tlf"
,
caption
=
"Datos: Comunidad Valenciana. Gráfico: lab.montera34.com/airbnb"
)
select
(
vut
,
tlf
==
963356793
)
table
(
local_activo
$
room_type
)
# select(vut,Teléfono=="963356793")
#
# vut[vut$tlf=="963356793",]
# table(local_activo$room_type)
#
# tlf=="963356793"
vut
$
Teléfono
<-
as.factor
(
vut
$
Teléfono
)
# extract VUT ID --------
# vut_valencia$registro.number <- str_extract(vut_valencia$Signatura,"[:punctuation:]?[:blank:]?-\\d{5}")
vut_valencia
$
registro.num
<-
as.character
(
strapplyc
(
vut_valencia
$
Signatura
,
".*(\\d{5}).*"
,
simplify
=
TRUE
))
vut_valencia.airbnb
<-
merge
(
vut_valencia
,
datos2
,
by
=
"registro.num"
,
type
=
"left"
)
# agrupa por host_id de airbnb y add tlf de vut
x
<-
vut_valencia.airbnb
%>%
group_by
(
host_id
,
host_name
,
Teléfono
)
%>%
summarise
(
count
=
n
())
# Puntos en mapa ---------------
ggplot
()
+
geom_polygon
(
data
=
municipios
,
aes
(
x
=
long
,
y
=
lat
,
group
=
group
),
color
=
"grey"
,
fill
=
"white"
,
size
=
0.1
)
+
geom_polygon
(
data
=
barrios
,
aes
(
x
=
long
,
y
=
lat
,
group
=
group
),
color
=
"grey"
,
fill
=
"white"
,
size
=
0.1
)
+
geom_point
(
data
=
vut
,
aes
(
x
=
lon
,
y
=
lat
),
alpha
=
1
,
size
=
0.1
)
+
geom_jitter
(
data
=
vut
,
aes
(
x
=
lon
,
y
=
lat
),
alpha
=
0.6
,
size
=
0.6
,
color
=
"red"
,
width
=
0.0007
,
height
=
0.0007
)
+
# geom_point(data= local_activo[host_id %in% n_alojamientos[1:5,]$host_id,],
# aes(x=longitude, y=latitude, color=host_name),alpha=0.6,size = 1) + #color="blue"
coord_fixed
(
ratio
=
1.3
)
+
# coord_fixed(xlim= c(-0.4, -0.3),ylim=c(39.45,39.5),ratio=1.3 ) +
theme_nothing
(
legend
=
TRUE
)
+
theme_minimal
(
base_family
=
"Roboto Condensed"
,
base_size
=
12
)
+
theme
(
panel.grid
=
element_blank
(),
axis.title
=
element_blank
(),
axis.text
=
element_blank
(),
panel.background
=
element_rect
(
fill
=
"#EEEEFF"
,
color
=
"grey"
,
size
=
0.25
),
legend.position
=
"top"
)
+
labs
(
title
=
paste
(
"Cada punto es una vivienda turística"
,
sep
=
""
))
+
guides
(
colour
=
guide_legend
(
override.aes
=
list
(
size
=
3
)))
ggplot
()
+
geom_polygon
(
data
=
municipios
,
aes
(
x
=
long
,
y
=
lat
,
group
=
group
),
color
=
"grey"
,
fill
=
"white"
,
size
=
0.1
)
+
geom_polygon
(
data
=
barrios
,
aes
(
x
=
long
,
y
=
lat
,
group
=
group
),
color
=
"grey"
,
fill
=
"white"
,
size
=
0.1
)
+
geom_point
(
data
=
vut
,
aes
(
x
=
lon
,
y
=
lat
),
alpha
=
1
,
size
=
0.1
)
+
geom_jitter
(
data
=
vut
,
aes
(
x
=
lon
,
y
=
lat
),
alpha
=
0.6
,
size
=
0.6
,
color
=
"red"
,
width
=
0.0007
,
height
=
0.0007
)
+
# geom_point(data= local_activo[host_id %in% n_alojamientos[1:5,]$host_id,],
# aes(x=longitude, y=latitude, color=host_name),alpha=0.6,size = 1) + #color="blue"
coord_fixed
(
xlim
=
c
(
-0.4
,
-0.3
),
ylim
=
c
(
39.45
,
39.5
),
ratio
=
1.3
)
+
theme_nothing
(
legend
=
TRUE
)
+
theme_minimal
(
base_family
=
"Roboto Condensed"
,
base_size
=
12
)
+
theme
(
panel.grid
=
element_blank
(),
axis.title
=
element_blank
(),
axis.text
=
element_blank
(),
panel.background
=
element_rect
(
fill
=
"#EEEEFF"
,
color
=
"grey"
,
size
=
0.25
),
legend.position
=
"top"
)
+
labs
(
title
=
paste
(
"Valencia zoom. Cada punto es una vivienda turística"
,
sep
=
""
))
+
guides
(
colour
=
guide_legend
(
override.aes
=
list
(
size
=
3
)))
# por distrito en Valencia------------
vut.distrito
<-
group_by
(
vut
,
distrito
)
%>%
summarise
(
n
=
n
()
)
%>%
arrange
(
desc
(
n
))
vut.distrito
%>%
filter
(
!
is.na
(
distrito
))
%>%
ggplot
(
aes
(
x
=
reorder
(
distrito
,
n
),
y
=
n
))
+
geom_col
()
+
geom_text
(
data
=
vut.distrito
%>%
filter
(
!
is.na
(
distrito
)),
aes
(
label
=
n
,
y
=
n
+3
),
hjust
=
0
,
size
=
3
,
color
=
"#000000"
)
+
coord_flip
()
+
theme_minimal
(
base_family
=
"Roboto Condensed"
,
base_size
=
10
)
+
theme
(
panel.grid.minor.y
=
element_blank
(),
panel.grid.major.y
=
element_blank
(),
legend.position
=
"bottom"
)
+
labs
(
title
=
"Número de viviendas turísticas por distrito"
,
subtitle
=
"Valencia. Marzo 2019."
,
y
=
"nº anuncios"
,
x
=
"tlf"
,
caption
=
"Datos: Comunidad Valenciana. Gráfico: lab.montera34.com/airbnb"
)
# por barrio
vut.barrio
<-
group_by
(
vut
,
barrio
)
%>%
summarise
(
n
=
n
()
)
%>%
arrange
(
desc
(
n
))
vut.barrio
%>%
ggplot
(
aes
(
x
=
reorder
(
barrio
,
n
),
y
=
n
))
+
geom_col
()
+
coord_flip
()
+
theme_minimal
(
base_family
=
"Roboto Condensed"
,
base_size
=
10
)
+
theme
(
panel.grid.minor.y
=
element_blank
(),
panel.grid.major.y
=
element_blank
(),
legend.position
=
"bottom"
)
+
labs
(
title
=
"Número de viviendas turísticas por barrio"
,
subtitle
=
"Valencia. Marzo 2019."
,
y
=
"nº anuncios"
,
x
=
"tlf"
,
caption
=
"Datos: Comunidad Valenciana. Gráfico: lab.montera34.com/airbnb"
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment